Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 275]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан прямоугольный треугольник $ABC$ с прямым углом $C$, вне треугольника взята точка $D$, так что $\angle ADC=\angle BAC$ и отрезок $CD$ пересекает гипотенузу $AB$ в точке $E$. Известно, что расстояние от точки $E$ до катета $AC$ равно радиусу описанной окружности треугольника $ADE$. Найдите углы треугольника $ABC$.
В остроугольном треугольнике ABC проведены высоты AM и CN, O – центр описанной окружности. Известно, что ∠B = β, а площадь четырёхугольника NOMB равна S. Найдите AC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пятиугольник ABCDE, все углы которого тупые, вписан в окружность ω. Продолжения сторон AB и CD пересекаются в точке E1; продолжения сторон BC и DE – в точке A1. Касательная, проведённая в точке B к описанной окружности треугольника BE1C, пересекает ω в точке B1; аналогично определяется точка D1. Докажите, что B1D1 || AE.
В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
∠AQM = ∠BPM.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 275]