ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 275]      



Задача 102329

Темы:   [ Круг, сектор, сегмент и проч. ]
[ Угол между касательной и хордой ]
Сложность: 4+
Классы: 8,9

Вокруг трапеции с основаниями $ \sqrt{8}$ и $ \sqrt{28}$ описана окружность радиуса 3, находящимся внутри трапеции. Каждый из четырёх отсекаемых сторонами трапеции сегментов отражён внутрь трапеции симметрично относительно отсекающей его стороны. Найдите площадь фигуры, состоящей из тех точек трапеции, которые не принадлежат ни одному из отражённых внутрь неё сегментов.
Прислать комментарий     Решение


Задача 102330

Темы:   [ Круг, сектор, сегмент и проч. ]
[ Угол между касательной и хордой ]
Сложность: 4+
Классы: 8,9

Трапеция с основанием $ \sqrt{44}$ и высотой $ \sqrt{11}$ + $ \sqrt{5}$ вписана в окружность радиуса 4. Каждый из четырёх отсекаемых сторонами трапеции сегментов отражён внутрь трапеции симметрично относительно отсекающей его стороны. Найдите площадь фигуры, состоящей из тех точек трапеции, которые не принадлежат ни одному из отражённых внутрь неё сегментов.
Прислать комментарий     Решение


Задача 36998

Темы:   [ Теорема синусов ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4+
Классы: 9,10

Треугольник ABC вписан в окружность. Через точки A и B проведены касательные к этой окружности, которые пересекаются в точке P. Точки X и Y — ортогональные проекции точки P на прямые AC и BC. Докажите, что прямая XY перпендикулярна медиане треугольника ABC, проведенной из вершины C.

Прислать комментарий     Решение

Задача 64463

Темы:   [ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Перебор случаев ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 5-
Классы: 8,9,10

Вокруг треугольника ABC описана окружность. Пусть X – точка внутри окружности, K и L – точки пересечения этой окружности и прямых BX и CX соответственно. Прямая LK пересекает прямую AB в точке E, а прямую AC в точке F. Найдите геометрическое место таких точек X, что описанные окружности треугольников AFK и AEL касаются.

Прислать комментарий     Решение

Задача 116284

Темы:   [ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .