ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Двум гениям сообщили по натуральному числу и сказали, что эти числа отличаются на 1. После этого они по очереди задают друг другу один и тот же вопрос: "Знаешь ли ты мое число?". Докажите, что рано или поздно один из них ответит положительно.

Вниз   Решение


Доказать, что существует такое натуральное число n, большее 1000, что сумма цифр числа 2n больше суммы цифр числа 2n+1.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 496]      



Задача 108520

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На боковых сторонах PQ и QR равнобедренного треугольника PQR взяты соответственно точки A и B так, что AB : PR = 3 : 5 и вокруг четырёхугольника PABR можно описать окружность. Отрезки AR и PB пересекаются в точке C, причём площадь треугольника PCR равна 10. Найдите площадь треугольника PQR.

Прислать комментарий     Решение


Задача 108521

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Окружность, пересекающая боковые стороны AB и BC равнобедренного треугольника ABC соответственно в точках D и E, является описанной около треугольника ADC. Отрезки AE и DC пересекаются в точке Q так, что площадь треугольника ADQ равна 1 и DQ : DC = 2 : 5. Найдите площадь треугольника DBE.

Прислать комментарий     Решение


Задача 109526

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 8,9

Внутри окружности расположен выпуклый четырехугольник, продолжения сторон которого пересекают ее в точках A1 , A2 , B1 , B2 , C1 , C2 , D1 и D2 960. Докажите, что если A1B2=B1C2=C1D2=D1A2 , то четырехугольник, образованный прямыми A1A2 , B1B2 , C1C2 , D1D2 , можно вписать в окружность.
Прислать комментарий     Решение


Задача 53725

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 8,9

Известно, что в четырехугольник можно вписать и около него можно описать окружность. Докажите, что отрезки, соединяющие точки касания противоположных сторон с вписанной окружностью, взаимно перпендикулярны.

Прислать комментарий     Решение


Задача 52410

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность. Перпендикуляры, опущенные на сторону AD из вершин B и C, пересекают диагонали AC и BD в точках E и F соответственно. Найдите EF, если BC = 1.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .