Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 202]
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.
Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.
|
|
Сложность: 4- Классы: 9,10,11
|
Решите в целых числах уравнение (x² – y²)² = 16y + 1.
|
|
Сложность: 4- Классы: 7,8,9
|
Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что n недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число n?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 202]