Страница:
<< 12 13 14 15 16 17
18 >> [Всего задач: 90]
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.
|
|
Сложность: 5- Классы: 9,10
|
Пусть A', B' и C' – точки касания вневписанных
окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1
подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD является одновременно и вписанным, и описанным, причём вписанная в ABCD окружность касается его сторон AB, BC, CD и AD в точках K, L, M, N соответственно. Биссектрисы внешних углов A и B четырёхугольника пересекаются в точке K', внешних углов B и C – в точке L', внешних углов C и D – в точке M', внешних углов D и A – в точке N'. Докажите, что прямые KK', LL', MM' и NN' проходят через одну точку.
|
|
Сложность: 5 Классы: 9,10,11
|
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
|
|
Сложность: 5 Классы: 10,11
|
Сфера с центром в плоскости основания
ABC тетраэдра
SABC проходит
через вершины
A ,
B и
C и вторично пересекает ребра
SA ,
SB и
SC
в точках
A1
,
B1
и
C1
соответственно. Плоскости, касающиеся
сферы в точках
A1
,
B1
и
C1
, пересекаются в точке
O .
Докажите, что
O – центр сферы, описанной около тетраэдра
SA1
B1
C1
.
Страница:
<< 12 13 14 15 16 17
18 >> [Всего задач: 90]