Страница:
<< 12 13 14 15 16 17 18 [Всего задач: 87]
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан выпуклый четырёхугольник
ABCD , и проведены биссектрисы
lA ,
lB ,
lC ,
lD внешних углов этого четырёхугольника.
Прямые
lA и
lB пересекаются в точке
K , прямые
lB и
lC – в точке
L , прямые
lC и
lD – в точке
M ,
прямые
lD и
lA – в точке
N . Докажите, что если окружности,
описанные около треугольников
ABK и
CDM , касаются внешним образом,
то и окружности, описанные около треугольников
BCL и
DAN , касаются
внешним образом.
|
|
Сложность: 6- Классы: 9,10,11
|
Даны две окружности, касающиеся внутренним образом в
точке
N . Хорды
BA и
BC внешней окружности касаются
внутренней в точках
K и
M соответственно. Пусть
Q
и
P – середины дуг
AB и
BC , не содержащих точку
N . Окружности, описанные около треугольников
BQK и
BPM , пересекаются в точке
B1
. Докажите, что
BPB1
Q – параллелограмм.
Страница:
<< 12 13 14 15 16 17 18 [Всего задач: 87]