ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан многочлен P(x) = a0xn + a1xn–1 + ... + an–1x + an. Положим m = min {a0, a0 + a1, ..., a0 + a1 + ... + an}. ![]() ![]() На отрезке [0, 2002] отмечены его концы и n – 1 > 0 целых точек так, что длины отрезков, на которые разбился отрезок [0, 2002], взаимно просты в совокупности. Разрешается разделить любой отрезок с отмеченными концами на n равных частей и отметить точки деления, если они все целые. (Точку можно отметить второй раз, при этом она остаётся отмеченной.) Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке? ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]
В 25 коробках лежат шарики нескольких цветов. Известно, что при любом k (1 ≤ k ≤ 25) в любых k коробках лежат шарики ровно k + 1 различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.
Для вещественных x > y > 0 и натуральных n > k докажите неравенство (xk – yk)n < (xn – yn)k.
Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |