Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 363]
|
|
Сложность: 4- Классы: 8,9,10
|
На рисунке изображена снежинка, симметричная относительно поворота вокруг точки O на 60° (при этом повороте каждый луч снежинки переходит в другой луч) и отражения относительно прямой OX. Найдите отношение длин отрезков OX : XY. (Пунктирными линиями показаны точки, лежащие на одной прямой.)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Отличник Вася складывает обыкновенные дроби без ошибок, а Петя складывает дроби так: в числитель пишет сумму числителей, а в знаменатель – сумму знаменателей. Учительница предложила ребятам сложить три несократимые дроби. У Васи получился правильный ответ 1. Мог ли у Пети получиться ответ меньше 1/10?
|
|
Сложность: 4- Классы: 10,11
|
В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
(И в начале, и в конце каждая из граней набора должна являться гранью многогранника.)
Существует ли число, которое делится ровно на 50 чисел из набора 1, 2, ..., 100?
|
|
Сложность: 4- Классы: 10,11
|
Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону?
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 363]