ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 1703]      



Задача 64598

Темы:   [ Раскраски ]
[ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Клетки доски 10·10 раскрашены в красный, синий и белый цвета. Каждые две клетки с общей стороной раскрашены в разные цвета. Известно, что красных клеток 20.
  а) Докажите, что всегда можно вырезать 30 прямоугольников, каждый из которых состоит из двух клеток – белой и синей.
  б) Приведите пример раскраски, когда можно вырезать 40 таких прямоугольников.
  в) Приведите пример раскраски, когда нельзя вырезать больше 30 таких прямоугольников.

Прислать комментарий     Решение

Задача 64600

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Может ли наименьшее общее кратное целых чисел 1, 2, ..., n быть в 2008 раз больше, чем наименьшее общее кратное целых чисел 1, 2, ..., m?

Прислать комментарий     Решение

Задача 64601

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средняя линия треугольника ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

Прислать комментарий     Решение

Задача 64602

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.

Прислать комментарий     Решение

Задача 64604

Темы:   [ Десятичная система счисления ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9

Число N является произведением двух последовательных натуральных чисел. Докажите, что
  а) можно приписать к этому числу справа две цифры так, чтобы получился точный квадрат;
  б) если  N > 12,  это можно сделать единственным способом.

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .