ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1703]      



Задача 108024

Темы:   [ Перегруппировка площадей ]
[ Построения ]
[ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Через середину дуги AC проведите прямую, делящую площадь фигуры пополам.

Прислать комментарий     Решение

Задача 108026

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования (тригонометрия) ]
[ Площадь четырехугольника ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

Прислать комментарий     Решение

Задача 108029

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

При каком отношении оснований трапеции существует прямая, на которой шесть точек пересечения с диагоналями, боковыми сторонами и продолжениями оснований трапеции высекают пять равных отрезков?

Прислать комментарий     Решение

Задача 108030

Темы:   [ Неравенства с высотами ]
[ Прямоугольные треугольники ]
Сложность: 3
Классы: 8,9

В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника.

Прислать комментарий     Решение

Задача 108035

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .