ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Мусин О.

Дан выпуклый n -угольник ( n>3 ), никакие четыре вершины которого не лежат на одной окружности. Окружность, проходящую через три вершины многоугольника и содержащую внутри себя остальные его вершины, назовем описанной. Описанную окружность назовем граничной, если она проходит через три последовательные (соседние) вершины многоугольника; описанную окружность назовем внутренней, если она проходит через три вершины, никакие две из которых не являются соседними вершинами многоугольника. Докажите, что граничных описанных окружностей на две больше, чем внутренних.

Вниз   Решение


В трапеции ABCD  AB – основание,  AC = BCH – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.

ВверхВниз   Решение


Функция F задана на всей вещественной оси, причём для любого x имеет место равенство:  F(x + 1)F(x) + F(x + 1) + 1 = 0.
Докажите, что функция F не может быть непрерывной.

ВверхВниз   Решение


20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

ВверхВниз   Решение


Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение).

ВверхВниз   Решение


Даны три прямые a, b, c. Докажите, что композиция симметрий ScoSboSa является симметрией относительно некоторой прямой тогда и только тогда, когда данные прямые пересекаются в одной точке.

ВверхВниз   Решение


Автор: Купцов Л.

Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M  (MB < MA,
MD < MC
).  Пусть K – отличная от O точка пересечения описанных окружностей треугольников AOC и DOB. Докажите, что угол MKO – прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109603  (#95.5.10.3)

Темы:   [ Числовые последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

Существует ли последовательность натуральных чисел, в которой каждое натуральное число встречается ровно один раз и при этом для любого  k = 1, 2, 3, ...  сумма первых k членов последовательности делится на k?
Прислать комментарий     Решение


Задача 109604  (#95.5.10.4)

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 6
Классы: 9,10,11

Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон.
Прислать комментарий     Решение


Задача 109605  (#95.5.10.5)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
[ Последовательности (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Последовательность натуральных чисел ai такова, что  НОД(ai, aj) = НОД(i, j)  для всех  i ≠ j.  Докажите, что  ai = i  для всех  iN.

Прислать комментарий     Решение

Задача 108196  (#95.5.10.6)

Темы:   [ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 9,10,11

Автор: Купцов Л.

Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M  (MB < MA,
MD < MC
).  Пусть K – отличная от O точка пересечения описанных окружностей треугольников AOC и DOB. Докажите, что угол MKO – прямой.

Прислать комментарий     Решение

Задача 109615  (#95.5.10.7)

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип крайнего (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .