ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что  BP = CP.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116545  (#9.6)

Темы:   [ Процессы и операции ]
[ Свойства симметрий и осей симметрии ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Шмаров В.

Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их A, B и C, после чего на плоскости отмечалась точка D, симметричная A относительно серединного перпендикуляра к BC. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.

Прислать комментарий     Решение

Задача 116560  (#10.6)

Темы:   [ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?

Прислать комментарий     Решение

Задача 116568  (#11.6)

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4
Классы: 10,11

Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что  BP = CP.

Прислать комментарий     Решение

Задача 116546  (#9.7)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

Прислать комментарий     Решение

Задача 116561  (#10.7)

Темы:   [ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10

В неравнобедренном остроугольном треугольнике ABC точки C0 и B0 – середины сторон AB и AC соответственно, O – центр описанной окружности, H – точка пересечения высот. Прямые BH и OC0 пересекаются в точке P, а прямые CH и OB0 – в точке Q. Оказалось, что четырёхугольник OPHQ – ромб. Докажите, что точки A, P и Q лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .