ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 819]      



Задача 64393

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

Пятиугольник ABCDE, все углы которого тупые, вписан в окружность ω. Продолжения сторон AB и CD пересекаются в точке E1; продолжения сторон BC и DE – в точке A1. Касательная, проведённая в точке B к описанной окружности треугольника BE1C, пересекает ω в точке B1; аналогично определяется точка D1. Докажите, что  B1D1 || AE.

Прислать комментарий     Решение

Задача 64394

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

Прислать комментарий     Решение

Задача 64395

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9,10

Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O.
Докажите, что SAOB + SCOD ≤ 2(SAOD + SBOC).

Прислать комментарий     Решение

Задача 64398

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10

Через вершину B правильного треугольника ABC проведена прямая l. Окружность ωa с центром Ia касается стороны BC в точке A1 и прямых l и AC. Окружность ωc с центром Ic касается стороны BA в точке C1 и прямых l и AC. Докажите, что ортоцентр треугольника A1BC1 лежит на прямой IaIc.

Прислать комментарий     Решение

Задача 64401

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+

Окружность k проходит через вершины B и C треугольника ABC  (AB > AC)  и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что  A1P = A1Q.  Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .