ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 1703]      



Задача 64443

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10

На боковых сторонах AB и AC равнобедренного треугольника ABC отметили соответственно точки K и L так, что  AK = CL  и  ∠ALK + ∠LKB = 60°.
Докажите, что  KL = BC.

Прислать комментарий     Решение

Задача 64445

Темы:   [ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

На сторонах треугольника ABC построены три подобных треугольника: YBA и ZAC – во внешнюю сторону, а XBC – внутрь (соответственные вершины перечисляются в одинаковом порядке). Докажите, что AYXZ – параллелограмм.

Прислать комментарий     Решение

Задача 64448

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.

Прислать комментарий     Решение

Задача 64449

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали.

Прислать комментарий     Решение

Задача 64450

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанный угол равен половине центрального ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .