ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
XI Олимпиада по геометрии имени И.Ф. Шарыгина (2015 г.)
классы:
|
||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Решение |
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]
Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.
Можно ли разрезать какой-нибудь прямоугольник на правильный шестиугольник со стороной 1 и несколько равных прямоугольных треугольников с катетами 1 и ?
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|