ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан кубический многочлен f(x). Назовём циклом такую тройку различных чисел (a, b, c), что f(a) = b, f(b) = c и f(c) = a. Известно, что нашлись восемь циклов (ai, bi, ci), i = 1, 2, ..., 8, в которых участвуют 24 различных числа. Докажите, что среди восьми чисел вида ai + bi + ci есть хотя бы три различных. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
Саша выбрал натуральное число N > 1 и выписал в строчку в порядке возрастания все его натуральные делители: d1 < ... < ds (так что d1 = 1 и
Дан кубический многочлен f(x). Назовём циклом такую тройку различных чисел (a, b, c), что f(a) = b, f(b) = c и f(c) = a. Известно, что нашлись восемь циклов (ai, bi, ci), i = 1, 2, ..., 8, в которых участвуют 24 различных числа. Докажите, что среди восьми чисел вида ai + bi + ci есть хотя бы три различных.
На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.
У царя Гиерона есть 11 металлических слитков, неразличимых на вид; царь знает, что их веса (в некотором порядке) равны 1, 2, ..., 11 кг. Ещё у него есть мешок, который порвётся, если в него положить больше 11 кг. Архимед узнал веса всех слитков и хочет доказать Гиерону, что первый слиток имеет
Дана клетчатая таблица 100×100, клетки которой покрашены в чёрный и белый цвета. При этом во всех столбцах поровну чёрных клеток, в то время как во всех строках разные количества чёрных клеток. Каково максимальное возможное количество пар соседних по стороне разноцветных клеток?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|