Страница:
<< 1 2 [Всего задач: 8]
Задача
111807
(#08.4.10.6)
|
|
Сложность: 3+ Классы: 8,9,10
|
По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
Задача
111808
(#08.4.10.7)
|
|
Сложность: 4+ Классы: 8,9,10
|
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
Задача
111809
(#08.4.10.8)
|
|
Сложность: 4 Классы: 9,10
|
Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.
Страница:
<< 1 2 [Всего задач: 8]