ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , ![]() ![]() В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный. ![]() ![]() ![]() В треугольной пирамиде ABCD рёбра BC и AD взаимно перпендикулярны, AB=CD , расстояние от середины O ребра BC до плоскости ABD равно h , ![]() ![]() |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 499]
Площадь равнобедренного треугольника PQR равна 12. На боковых сторонах PQ и RQ взяты соответственно точки B и C так, что вокруг четырёхугольника PBCQ можно описать окружность и PQ : BC = 3 : 2. Найдите площадь треугольника APQ, где A — точка пересечения отрезков PC и BQ.
На боковых сторонах PQ и QR равнобедренного треугольника PQR взяты соответственно точки A и B так, что AB : PR = 3 : 5 и вокруг четырёхугольника PABR можно описать окружность. Отрезки AR и PB пересекаются в точке C, причём площадь треугольника PCR равна 10. Найдите площадь треугольника PQR.
Окружность, пересекающая боковые стороны AB и BC равнобедренного треугольника ABC соответственно в точках D и E, является описанной около треугольника ADC. Отрезки AE и DC пересекаются в точке Q так, что площадь треугольника ADQ равна 1 и DQ : DC = 2 : 5. Найдите площадь треугольника DBE.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |