ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .

Вниз   Решение


В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра BC и AD взаимно перпендикулярны, AB=CD , расстояние от середины O ребра BC до плоскости ABD равно h , CAD = CDA = , угол между ребром AD и гранью ABC равен arccos . Найдите расстояние от точки O до плоскости ACD , угол между ребром BC и гранью ABD , а также угол между гранями ABC и BCD .

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 499]      



Задача 108519

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Площадь равнобедренного треугольника PQR равна 12. На боковых сторонах PQ и RQ взяты соответственно точки B и C так, что вокруг четырёхугольника PBCQ можно описать окружность и PQ : BC = 3 : 2. Найдите площадь треугольника APQ, где A — точка пересечения отрезков PC и BQ.

Прислать комментарий     Решение


Задача 108520

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На боковых сторонах PQ и QR равнобедренного треугольника PQR взяты соответственно точки A и B так, что AB : PR = 3 : 5 и вокруг четырёхугольника PABR можно описать окружность. Отрезки AR и PB пересекаются в точке C, причём площадь треугольника PCR равна 10. Найдите площадь треугольника PQR.

Прислать комментарий     Решение


Задача 108521

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Окружность, пересекающая боковые стороны AB и BC равнобедренного треугольника ABC соответственно в точках D и E, является описанной около треугольника ADC. Отрезки AE и DC пересекаются в точке Q так, что площадь треугольника ADQ равна 1 и DQ : DC = 2 : 5. Найдите площадь треугольника DBE.

Прислать комментарий     Решение


Задача 109526

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 8,9

Внутри окружности расположен выпуклый четырехугольник, продолжения сторон которого пересекают ее в точках A1 , A2 , B1 , B2 , C1 , C2 , D1 и D2 960. Докажите, что если A1B2=B1C2=C1D2=D1A2 , то четырехугольник, образованный прямыми A1A2 , B1B2 , C1C2 , D1D2 , можно вписать в окружность.
Прислать комментарий     Решение


Задача 53725

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 8,9

Известно, что в четырехугольник можно вписать и около него можно описать окружность. Докажите, что отрезки, соединяющие точки касания противоположных сторон с вписанной окружностью, взаимно перпендикулярны.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .