ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 496]      



Задача 52468

 [Теорема Птолемея]
Темы:   [ Теорема Птолемея ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

Прислать комментарий     Решение

Задача 52495

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4-
Классы: 8,9

Через точку O внутри выпуклого четырёхугольника ABCD проведены четыре окружности одинакового радиуса, каждая из которых касается двух смежных сторон четырёхугольника. Докажите, что около четырёхугольника ABCD можно описать окружность.

Прислать комментарий     Решение


Задача 53733

Темы:   [ Вписанные четырехугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Биссектриса делит дугу пополам ]
Сложность: 4-
Классы: 8,9

На основании AC равнобедренного треугольника ABC взята точка D, а на отрезке BD – точка K так, что  AD : DC = ∠AKD : ∠DKC = 2 : 1.
Докажите, что  ∠AKD = ∠B.

Прислать комментарий     Решение

Задача 55685

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

В выпуклом четырехугольнике ABCD вершины A и C противоположны. Сторона BC имеет длину, равную 4, величина угла ADC равна 60o, а величина угла BAD равна 90o. Найдите длину стороны CD, если площадь четырехугольника равна

(AB . CD + BC . AD)/2.

Прислать комментарий     Решение

Задача 64341

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Подобные треугольники (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11

На сторонах четырёхугольника ABCD с перпендикулярными диагоналями во внешнюю сторону построены подобные треугольники ABM, CBP, CDL и ADK (соседние ориентированы по-разному). Докажите, что  PK = ML.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .