Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 563]
|
|
Сложность: 5 Классы: 9,10,11
|
Две прямые на плоскости пересекаются под углом
. На одной из них сидит
блоха. Каждую секунду она прыгает с одной прямой на другую (точка пересечения
считается принадлежащей обеим прямым). Известно, что длина каждого её прыжка
равна 1 и что она никогда не возвращается на то место, где была секунду
назад. Через некоторое время блоха вернулась в первоначальную точку. Докажите,
что угол
измеряется рациональным числом градусов.
|
|
Сложность: 5 Классы: 9,10,11
|
Каждую вершину выпуклого четырехугольника площади
S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через
S' . Докажите, что
<3
.
|
|
Сложность: 6- Классы: 9,10,11
|
Пусть
ABCD – вписанный четырёхугольник,
O –
точка пересечения диагоналей
AC и
BD . Пусть окружности,
описанные около треугольников
ABO и
COD , пересекаются в
точке
K . Точка
L такова, что треугольник
BLC подобен
треугольнику
AKD . Докажите, что если четырёхугольник
BLCK
выпуклый, то он он является описанным.
|
|
Сложность: 6- Классы: 8,9,10,11
|
Окружность
σ касается равных сторон
AB и
AC равнобедренного
треугольника
ABC и пересекает сторону
BC в точках
K и
L .
Отрезок
AK пересекает
σ второй раз в точке
M . Точки
P и
Q симметричны точке
K относительно точек
B и
C соответственно.
Докажите, что описанная окружность треугольника
PMQ касается
окружности
σ .
В данный остроугольный треугольник впишите
треугольник наименьшего периметра.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 563]