Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 629]
Дана клетчатая доска размером а) 10×12; б) 9×10; в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?
Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4.
|
|
Сложность: 3- Классы: 7,8,9
|
Натуральные числа a, b, c таковы, что числа p = bc + a, q = ab + c, r = ca + b простые. Доказать, что два из чисел p, q, r равны между собой.
|
|
Сложность: 3- Классы: 6,7,8
|
Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному
разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.
В написанном на доске примере на умножение хулиган Петя исправил две цифры.
Получилось 4·5·4·5·4 = 2247.
Восстановите исходный пример.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 629]