ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F. Решение |
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 501]
На сторонах AB и CD прямоугольника ABCD отметили точки E и F, так что AFCE – ромб. Известно, что АВ = 16, ВС = 12. Найдите EF.
В четырёхугольнике ABCD стороны AD и BC параллельны.
Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.
Дан квадрат со стороной 10. Разрежьте его на 100 равных четырёхугольников, каждый из которых вписан в окружность диаметра
На диагонали $AC$ ромба $ABCD$ построен параллелограмм $APQC$ так, что точка $B$ лежит внутри него, а сторона $AP$ равна стороне ромба.
Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|