ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Доказать, что если у шестиугольника противоположные стороны параллельны и диагонали, соединяющие противоположные вершины, равны, то вокруг него можно описать окружность.

Вниз   Решение


Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.

ВверхВниз   Решение


Автор: Шмарин С.

Из картона вырезали два многоугольника. Может ли быть, что при любом их расположении на плоскости они либо имеют общие внутренние точки, либо пересекаются по конечному множеству точек?

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 508]      



Задача 55654

Темы:   [ Композиции симметрий ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 8,9

Из точки O на плоскости выходят 2n прямых. Могут ли они служить серединными перпендикулярами к сторонам некоторого 2n-угольника?

Прислать комментарий     Решение


Задача 67365

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Многоугольники (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шмарин С.

Из картона вырезали два многоугольника. Может ли быть, что при любом их расположении на плоскости они либо имеют общие внутренние точки, либо пересекаются по конечному множеству точек?
Прислать комментарий     Решение


Задача 52855

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
Сложность: 4+
Классы: 8,9

В шестиугольнике ABCDEF известно, что AB || DE, BC || EF, CD || FA и AD = BE = CF. Докажите, что около этого шестиугольника можно описать окружность.

Прислать комментарий     Решение


Задача 56500

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

Прислать комментарий     Решение

Задача 61158

Темы:   [ Правильные многоугольники ]
[ Вычисления. Метрические соотношения в многоугольниках ]
[ Момент инерции ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 10,11

Правильный n-угольник вписан в единичную окружность. Докажите, что
а) сумма квадратов длин всех сторон и всех диагоналей равна n²;
б) сумма длин всех сторон и всех диагоналей равна  n ctg π/2n;
в) произведение длин всех сторон и всех диагоналей равно  nn/2.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .