ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .

Вниз   Решение



Боковые грани треугольной пирамиды образуют равные углы с плоскостью основания. Докажите, что высота пирамиды проходит либо через центр окружности, вписанной в треугольник основания, либо через центр одной из вневписанных окружностей этого треугольника.

ВверхВниз   Решение


В окружность вписан четырёхугольник ABCD. На дуге AD, не содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K соответственно на стороны AD, BC, AB и CD (или на продолжения этих сторон). Известно, что  KP = d,  а
SNQK = mSMPK.  Найдите KN.

ВверхВниз   Решение


В выпуклом четырёхугольнике MNPQ диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Найдите NS, если известно, что около четырёхугольника MNPQ можно описать окружность,  PQ = 12,  SQ = 9.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра BC и AD взаимно перпендикулярны, AB=CD , расстояние от середины O ребра BC до плоскости ABD равно h , CAD = CDA = , угол между ребром AD и гранью ABC равен arccos . Найдите расстояние от точки O до плоскости ACD , угол между ребром BC и гранью ABD , а также угол между гранями ABC и BCD .

ВверхВниз   Решение


Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

ВверхВниз   Решение


Две окружности проходят через вершину угла и точку его биссектрисы. Докажите, что отрезки, высекаемые ими на сторонах угла, равны.

ВверхВниз   Решение



Каждое из боковых ребер пирамиды равно 269/32. Основание пирамиды - треугольник со сторонами 13, 14, 15. Найдите объем пирамиды.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 86968

Тема:   [ Высота пирамиды (тетраэдра) ]
Сложность: 3+
Классы: 10,11


Основание пирамиды - прямоугольник с диагональю, равной b, и углом в 60o между диагоналями. Каждое из боковых ребер образует с плоскостью основания угол в 45o. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 86969

Тема:   [ Высота пирамиды (тетраэдра) ]
Сложность: 3+
Классы: 10,11


Каждое из боковых ребер пирамиды равно 269/32. Основание пирамиды - треугольник со сторонами 13, 14, 15. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 87010

Темы:   [ Элементы пирамиды (прочее) ]
[ Объем призмы ]
[ Правильный тетраэдр ]
Сложность: 3+
Классы: 10,11


Найдите объем параллелепипеда, все грани которого - равные ромбы со стороной, равной a, и острым углом 60o.

Прислать комментарий     Решение


Задача 87468

Тема:   [ Высота пирамиды (тетраэдра) ]
Сложность: 3+
Классы: 10,11


Основанием пирамиды служит прямоугольный треугольник с гипотенузой, равной 6 и острым углом, равным 15o. Все боковые ребра наклонены к плоскости основания под углом 45o. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 78071

Темы:   [ Высота пирамиды (тетраэдра) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 10,11

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .