Страница:
<< 35 36 37 38 39 40 41 [Всего задач: 204]
а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.
б) Докажите, что для треугольника верно и обратное утверждение: если на стороне
A1A2 выбраны точки
B1 и
D2, на стороне
A2A3 – точки
B2 и
D3, а на стороне
A3A1 – точки
B3 и
D1 так, что
A1B1·
A2B2·
A3B3 =
A1D1·
A2D2·
A3D3, то, построив параллелограммы
A1B1C1D1,
A2B2C2D2 и
A3B3C3D3, получим прямые
A1C1,
A2C2 и
A3C3, пересекающиеся в одной точке.
|
|
Сложность: 4+ Классы: 8,9,10
|
В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке
B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?
|
|
Сложность: 4+ Классы: 10,11
|
Существуют ли выпуклая
n -угольная (
n
4
)
и треугольная пирамиды такие, что четыре трехгранных угла
n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан выпуклый многоугольник и точка
O внутри него. Любая прямая, проходящая
через точку
O, делит площадь многоугольника пополам. Доказать, что
многоугольник центрально-симметричный и
O — центр симметрии.
Страница:
<< 35 36 37 38 39 40 41 [Всего задач: 204]