ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 [Всего задач: 204]      



Задача 73642

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9

а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство  A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.

б) Докажите, что для треугольника верно и обратное утверждение: если на стороне A1A2 выбраны точки B1 и D2, на стороне A2A3 – точки B2 и D3, а на стороне A3A1 – точки B3 и D1 так, что  A1B1·A2B2·A3B3 = A1D1·A2D2· A3D3,  то, построив параллелограммы A1B1C1D1, A2B2C2D2 и A3B3C3D3, получим прямые A1C1, A2C2 и A3C3, пересекающиеся в одной точке.

Прислать комментарий     Решение

Задача 109947

Темы:   [ Выпуклые многоугольники ]
[ Пятиугольники ]
[ Биссектриса угла ]
[ Неравенства для остроугольных треугольников ]
[ Теорема Хелли ]
Сложность: 4+
Классы: 8,9,10

В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?

Прислать комментарий     Решение

Задача 109911

Темы:   [ Неравенства с трехгранными углами ]
[ Четырехугольная пирамида ]
[ Тетраэдр (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 10,11

Существуют ли выпуклая n -угольная ( n 4 ) и треугольная пирамиды такие, что четыре трехгранных угла n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Прислать комментарий     Решение


Задача 78215

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Свойства симметрии и центра симметрии ]
[ Доказательство от противного ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Малые шевеления ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 9,10,11

Дан выпуклый многоугольник и точка O внутри него. Любая прямая, проходящая через точку O, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и O — центр симметрии.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .