Страница:
<< 35 36 37 38 39 40
41 >> [Всего задач: 204]
|
|
Сложность: 5- Классы: 6,7,8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
|
|
Сложность: 5- Классы: 9,10,11
|
Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
б) Докажите, что найдутся две такие хорды.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Озеро имеет форму невыпуклого
n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого
m-угольника, где
m≤n.
|
|
Сложность: 5+ Классы: 9,10,11
|
Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число
невыпуклых четырёхугольников?
|
|
Сложность: 6 Классы: 10,11
|
Дан выпуклый
n -угольник (
n>3
), никакие четыре вершины которого не
лежат на одной окружности. Окружность, проходящую через три
вершины многоугольника и содержащую внутри себя остальные его вершины,
назовем описанной. Описанную окружность назовем граничной,
если она проходит через три последовательные (соседние) вершины многоугольника;
описанную окружность назовем внутренней, если она проходит через
три вершины, никакие две из которых не являются соседними
вершинами многоугольника. Докажите, что граничных описанных
окружностей на две больше, чем внутренних.
Страница:
<< 35 36 37 38 39 40
41 >> [Всего задач: 204]