Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
109745
(#01.5.9.1)
|
|
Сложность: 4 Классы: 7,8,9
|
Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для
которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?
Задача
109746
(#01.5.9.2)
|
|
Сложность: 5- Классы: 8,9,10
|
Два многочлена P(x) = x4 + ax³ + bx² + cx + d и Q(x) = x² + px + q принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что P(x0) < Q(x0).
Задача
108140
(#01.5.9.3)
|
|
Сложность: 4 Классы: 8,9
|
Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.
Задача
109748
(#01.5.9.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются
в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов.
Докажите, что существует треугольник, все стороны которого целиком
лежат на диагоналях одного цвета. (Вершины треугольника не
обязательно должны оказаться вершинами исходного многоугольника.)
Задача
109749
(#01.5.9.5)
|
|
Сложность: 4+ Классы: 7,8,9
|
Юра выложил в ряд 2001 монету достоинством 1, 2 и 3 копейки. Оказалось,
что между любыми двумя копеечными монетами лежит хотя бы одна монета, между
любыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между
любыми двумя трехкопеечными монетами лежат хотя бы три монеты. Сколько у Юры
могло быть трехкопеечных монет?
Страница: 1
2 3 4 5 >> [Всего задач: 24]