Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]
Задача
110029
(#00.4.11.7)
|
|
Сложность: 4- Классы: 7,8,9
|
Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?
Задача
110030
(#00.4.11.8)
|
|
Сложность: 5+ Классы: 8,9,10
|
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
Задача
109723
(#00.5.9.1)
|
|
Сложность: 4- Классы: 8,9
|
Различные числа a, b и c таковы, что уравнения x² + ax + 1 = 0 и x² + bx + c = 0 имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения x² + x + a = 0 и x² + cx + b = 0. Найдите сумму a + b + c.
Задача
109724
(#00.5.9.2)
|
|
Сложность: 4+ Классы: 8,9,10
|
Таня задумала натуральное число X ≤ 100, а Саша пытается
его угадать. Он выбирает пару натуральных чисел M и N, меньших 100, и задаёт вопрос: "Чему равен наибольший общий делитель X + M и N?" Докажите, что Саша может угадать Танино число, задав семь таких вопросов.
Задача
108145
(#00.5.9.3)
|
|
Сложность: 4+ Классы: 8,9
|
Пусть O – центр описанной окружности ω остроугольного треугольника ABC. Окружность ω1 с центром K проходит через точки A, O и C и пересекает стороны AB и BC в точках M и N. Известно, что точки L и K симметричны относительно прямой MN. Докажите, что BL ⊥ AC.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]