ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В вершинах правильного девятиугольника расставляют числа 1, 2, 3, 4, 5, 6, 7, 8, 9, после чего на каждой диагонали пишут произведение чисел, стоящих на её концах. Можно ли так расставить числа в вершинах, чтобы все числа на диагоналях были разные?

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 363]      



Задача 104111

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 3+
Классы: 6,7,8

Закрасьте в квадрате 9×9 несколько клеток так, чтобы из центра квадрата не были видны его стороны (то есть любой луч, выходящий из центра, задевал какую-нибудь закрашенную клетку хотя бы по углу). Нельзя закрашивать клетки, соседние по стороне или углу, а также центральную клетку. \epsfbox{pmath.1}
Прислать комментарий     Решение


Задача 104112

Темы:   [ Многоугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В вершинах правильного девятиугольника расставляют числа 1, 2, 3, 4, 5, 6, 7, 8, 9, после чего на каждой диагонали пишут произведение чисел, стоящих на её концах. Можно ли так расставить числа в вершинах, чтобы все числа на диагоналях были разные?

Прислать комментарий     Решение

Задача 107608

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенства с площадями ]
[ Ромбы. Признаки и свойства ]
[ Площадь треугольника (через высоту и основание) ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Прямоугольник ABCD  (AB = a,  BC = b)  сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что  S < ¾ ab.

Прислать комментарий     Решение

Задача 107619

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 7,8,9

Длина высоты AB прямоугольной трапеции ABCD равна сумме длин оснований AD и BC. В каком отношении биссектриса угла B делит сторону CD.

Прислать комментарий     Решение

Задача 107622

Темы:   [ Диаметр, основные свойства ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 7,8,9

В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой – либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .