Страница:
<< 206 207 208 209
210 211 212 >> [Всего задач: 1221]
|
|
Сложность: 5- Классы: 8,9,10
|
На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?
|
|
Сложность: 5- Классы: 9,10,11
|
Расстоянием между числами a1a2a3a4a5 и b1b2b3b4b5 назовём максимальное i, для которого ai ≠ bi. Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?
|
|
Сложность: 5- Классы: 9,10,11
|
Дано целое число n > 1. Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?
|
|
Сложность: 5 Классы: 9,10,11
|
Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки.
|
|
Сложность: 5 Классы: 7,8,9,10
|
Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?
Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
Страница:
<< 206 207 208 209
210 211 212 >> [Всего задач: 1221]