ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  a : (1 – a)  по весу, где  0 < a < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

   Решение

Задачи

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 590]      



Задача 116231

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5
Классы: 10,11

Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  a : (1 – a)  по весу, где  0 < a < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

Прислать комментарий     Решение

Задача 32116

Темы:   [ Неравенства с углами ]
[ Против большей стороны лежит больший угол ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Пусть a, b, c – длины сторон треугольника; α, β, γ – величины противолежащих углов. Докажите, что    aα + bβ + cγ ≥ aβ + bγ + cα.

Прислать комментарий     Решение


Задача 65874

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

Прислать комментарий     Решение

Задача 65478

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанный угол равен половине центрального ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Около единичного квадрата ABCD описана окружность, на которой выбрана точка М.
Какое наибольшее значение может принимать произведение MA·MB·MC·MD?

Прислать комментарий     Решение

Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .