ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах AB и AD квадрата ABCD взяты точки K и N соответственно. При этом AK . AN = 2BK . DN. Отрезки CK и CN пересекают диагональ BD в точках L и M. Докажите, что точки K, L, M, N и A лежат на одной окружности. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 64]
В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает сторону AC в точке M, причём MA/MC = 3. Перпендикуляр, проходящий через середину стороны AC, пересекает сторону AB в точке N, причём AN/BN = 2. Найдите углы треугольника ABC.
На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём AE : EB = 1 : 2, а CF = FD.
Две окружности пересекаются в точках A и K. Их центры расположены по разные стороны от прямой, содержащей отрезок AK. Точки B и C лежат на разных окружностях. Прямая AB касается одной окружности в точке A. Прямая AC касается другой окружности также в точке A, BK = 1, CK = 4, tg∠BAC = . Найдите SABC.
В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны S1 и S2. Найдите площадь третьего.
На сторонах AB и AD квадрата ABCD взяты точки K и N соответственно. При этом AK . AN = 2BK . DN. Отрезки CK и CN пересекают диагональ BD в точках L и M. Докажите, что точки K, L, M, N и A лежат на одной окружности.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 64] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|