ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза. ![]() |
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 629]
На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
На белых и чёрных клетках доски 10×10 стоит по одинаковому количеству ладей так, что никакие две ладьи друг друга не бьют.
На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.
По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.
Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из n – 1 цветов так, чтобы от каждого блока отходил n – 1 провод разного цвета, если а) n = 6; б) n = 13?
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 629] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |