ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все функции f : , которые для всех x,y,z удовлетворяют неравенству f(x+y)+f(y+z)+f(z+x) 3f(x+2y+3z).

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 109720  (#00.5.10.6)

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Прислать комментарий     Решение

Задача 108148  (#00.5.10.7)

Темы:   [ Гомотетия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
Сложность: 6-
Классы: 9,10,11

Даны две окружности, касающиеся внутренним образом в точке N . Хорды BA и BC внешней окружности касаются внутренней в точках K и M соответственно. Пусть Q и P – середины дуг AB и BC , не содержащих точку N . Окружности, описанные около треугольников BQK и BPM , пересекаются в точке B1 . Докажите, что BPB1Q – параллелограмм.
Прислать комментарий     Решение


Задача 109722  (#00.5.10.8)

Темы:   [ Индукция в геометрии ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Раскраски ]
Сложность: 5+
Классы: 8,9,10,11

На прямоугольном столе лежат равные картонные квадраты n различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть любые n квадратов различных цветов, то какие-нибудь два из них можно прибить к столу одним гвоздем. Докажите, что все квадраты некоторого цвета можно прибить к столу 2n-2 гвоздями.
Прислать комментарий     Решение


Задача 109707  (#00.5.11.1)

Тема:   [ Характеристические свойства и рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Найдите все функции f : , которые для всех x,y,z удовлетворяют неравенству f(x+y)+f(y+z)+f(z+x) 3f(x+2y+3z).
Прислать комментарий     Решение


Задача 109708  (#00.5.11.2)

Темы:   [ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 7,8,9

Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой  a + 99b = c,  нашлись два числа из одного подмножества.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .