ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.

Вниз   Решение


В небольшом шотландском городке стояла школа, в которой учились ровно 1000 школьников. У каждого из них был шкаф для одежды – всего 1000 шкафов, причём шкафы были пронумерованы числами о 1 до 1000. А ещё в этой школе жили привидения – ровно 1000 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала первое привидение открыло все шкафы; потом второе привидение закрыло те шкафы, номер которых делился на 2; затем третье привидение поменяло позиции (то есть открыло шкаф, если он был закрыт, и закрыло – если он был открыт) тех шкафов, номер которых делился на 3; следом за ним четвёртое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т.д. Как только тысячное привидение поменяло позицию тысячного шкафа, пропел петух, и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 499]      



Задача 116051

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Радикальная ось ]
[ Подобие ]
Сложность: 4
Классы: 10,11

Автор: Ивлев Б.М.

Четырёхугольник ABCD вписан в окружность с центром O, причём точка O не лежит ни на одной из диагоналей этого четырёхугольника. Известно, что центр описанной окружности треугольника AOC лежит на прямой BD. Докажите, что центр описанной окружности треугольника BOD лежит на прямой AC.

Прислать комментарий     Решение

Задача 116160

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
[ Свойства симметрии и центра симметрии ]
Сложность: 4
Классы: 10,11

AD и BE — высоты треугольника ABC. Оказалось, что точка C', симметричная вершине C относительно середины отрезка DE, лежит на стороне AB. Докажите, что AB – касательная к окружности, описанной около треугольника DEC'.

Прислать комментарий     Решение

Задача 53279

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Отношения площадей ]
Сложность: 4
Классы: 8,9

Окружность, проведённая через вершины B и C треугольника ABC, пересекает сторону AB в точке D, а сторону AC — в точке E. Площадь круга, ограниченного этой окружностью, в 12 раз меньше площади круга, описанного около треугольника ADE. Отношение площади треугольника ADE к площади четырёхугольника BDEC равно $ {\frac{25}{11}}$. Угол DBE равен 60o. Найдите угол ADC.

Прислать комментарий     Решение


Задача 53280

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Отношения площадей ]
Сложность: 4
Классы: 8,9

На стороне BC треугольника BCD выбрана точка E, а на стороне BD — точка F, причём угол BEF равен углу BDC. Площадь круга, описанного около треугольника CFD, в 5 раз меньше площади круга, описанного около треугольника BEF. Отношение площади четырёхугольника CEFD к площади треугольника BEF равно $ {\frac{9}{16}}$. Угол FDE равен 45o. Найдите угол CED.

Прислать комментарий     Решение


Задача 55553

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

Точки M и N на сторонах BC и AB равностороннего треугольника ABC выбраны так, что площадь треугольника AKC равна площади четырёхугольника BMKN (K — точка пересечения отрезков AM и CN). Найдите угол AKC.

Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .