Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 418]
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть p – простое число, большее 10k. Взяли число, кратное p, и вставили между какими-то двумя его соседними цифрами k-значное число A. Получили число, кратное p. В него вставили k-значное число B – между двумя соседними цифрами числа A, – и результат снова оказался кратным p. Докажите, что число B получается из числа A перестановкой цифр.
|
|
Сложность: 4 Классы: 9,10,11
|
Таблица размером 2017×2017 заполнена ненулевыми цифрами. Среди 4034 чисел, десятичные записи которых совпадают со строками и столбцами этой таблицы, читаемыми слева направо и сверху вниз соответственно, все, кроме одного, делятся на простое число p, а оставшееся число на p не делится. Найдите все возможные значения p.
|
|
Сложность: 4 Классы: 9,10,11
|
На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.
|
|
Сложность: 4 Классы: 9,10,11
|
a1, a2, ..., a101 – такая перестановка чисел 2, 3, ..., 102, что ak делится на k при каждом k. Найти все такие перестановки.
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число; an+1 = ⅕ an, если an делится на 5;
an+1 = [
an], если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.
Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 418]