ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Барону Мюнхгаузену сообщили о многочлене $P(x) = a_nx^n + \dots + a_1x + a_0$ лишь то, что многочлен $P(x) + P(-x)$ имеет ровно $45$ различных действительных корней. Барон, не зная даже, чему равно $n$, утверждает, что может определить один из коэффициентов $a_n$, $\dots$, $a_1$, $a_0$ (готов указать его номер и значение). Не ошибается ли барон?

Вниз   Решение


Автор: Юран А.Ю.

В квадратном листе бумаги площади $1$ проделали дыру в форме треугольника (вершины дыры не выходят на границу листа). Докажите, что из оставшейся бумаги можно вырезать треугольник площади $\frac16$.

ВверхВниз   Решение


Разделить циркулем и линейкой отрезок на 6 равных частей, проведя не более 8 линий (прямых, окружностей).

ВверхВниз   Решение


В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 67404

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10,11

В каждую клетку доски $8\times 8$ вписано натуральное число так, что выполнено условие: если из одной клетки в другую можно перейти одним ходом коня, то отношение чисел в этих двух клетках является простым числом. Могло ли оказаться, что в какую-то клетку вписано число $5$, а в какую-то другую – число $6$?
Прислать комментарий     Решение


Задача 67411

Темы:   [ Многочлены (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10,11

Автор: Глебов А.

Для каждого многочлена степени $45$ с коэффициентами $1$, $2$, $3$, $\dots$, $46$ (в каком-то порядке) Вася выписал на доску все его различные действительные корни. Затем он увеличил все числа на доске на $1$. Каких чисел на доске оказалось больше: положительных или отрицательных?
Прислать комментарий     Решение


Задача 67418

Темы:   [ Арифметические действия. Числовые тождества ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на $17$ частей. Могли ли все части оказаться равными по массе? (Объединять части нельзя.)
Прислать комментарий     Решение


Задача 67419

Темы:   [ Раскраски ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9

Шахматную доску $8\times 8$ перекрасили в несколько цветов (каждую клетку — в один цвет). Оказалось, что если две клетки — соседние по диагонали или отстоят друг от друга на ход коня, то они обязательно разного цвета. Какое наименьшее число цветов могло быть использовано?
Прислать комментарий     Решение


Задача 67421

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8,9,10

Два пирата делят $25$ золотых монет разного достоинства, выложенные в виде квадрата $5\times 5$. Пираты по очереди берут по одной монете с краю (монету можно взять, если слева, или справа, или снизу, или сверху от неё нет другой). Верно ли, что первый пират всегда может действовать так, чтобы гарантированно получить хотя бы половину суммарной добычи?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .